
The TSTAR Autonomy Test Tool

Kirk Reiuholt,z atld DaIl Dvorak
JctI’repulsion Laboratory”

California Iustitutc of ‘llCCIIILOIOgY

4800 Oak Grove Drive
I’asadeua, CA!J1109
first.lastl(ljpl. uasa.gov

JUII(> 15, 1997

Abstract

The new breed of autonomous goal-driven space-
craft contain much more onboard capability than
their sequence-driven predecessors, cienlanding corr-
esponding advances in software verification tech-
niques. Although autonomous systelns arc deternlin-
istic, they are highly sensitive tc) the environment,
such that the response of a system in certain con-
texts must be explored in detail in order to provide
confidence in both the design and implernel[tation.
We describe a system verification strategy and tool
based upon the automatic generation and executiorl a
large number of tests that are “near” a given nominal
mission scenario, and a novel use of for[lial methocls
to analyze the test results. Results from verifying one
software system bear out the benefits of using forlnal
behavior specifications.

1 INTRODUCTION

NTASA is nloving into an era of inrreascd spacecraft
autononly[l]- a natural outcome of a desire to reduce
the cost of science data combined with the impact of
light-time conlnmniratioIl delays and the availat)il-
ity of ever more powerful space-capal)le con)puters.

“’l’he work described was performed at the Jet [’mpulsitrn
laboratory, California Institute of ‘Iechrlolcrgy under co[ltract
with the National Aeronautics and Space ~lcirl]inistratic)ll.

Autoncmly has the poteI1tial to
spacecraft operations, inl~)rove
vide increased science product

decrease the cost of
reliability, ancl pro-
volunle ancl quality.

I[owever, before these things can occur, we must pro-
vide a conlpelling argunleIlt that we can address re-
liability concerns over the full product lifecycle.

l’raditional spacecraft flight software testing basi-
cally de[nonstrates that each con)rna~ld works cor-
rectly, and that combinations of commands that are
likely to be used during the Iltission work properly
together. This has been appropriate and effective,
because the systems are desig[led to nlinilnize the in-
fluence of environmental factors on the execution of
low-level cornlllands.

Ilowever, almost by definition, as the degree of
autononly increases, the sensitivity to the envirorl-
tnmlt also increasesl. Since the system is sensitive to
the ellvironnlent, and the actual mission ellviroIln)ent
caI\’t be predicted with sufficient accuracy, one nlust

1 “Auto fLon)j ,“ is often described M “closing rnorc loops orl -
hoard”, but it nlay also he viewed M arl online optit[lizatiorl
[,roble[r] (e.g. rrlinir11i7e rswourcc consunlption, rltaxitili7e sci-

ence rcturil, optin~izc a schedule) where the environnmt h=
substantial influence on the outconle of the optir[liz, atiun. It is
the nature of discrete npti[nization problenls that they can be
very sensitive to parameters in the sense that a seenlingly snlall
change in the input can cause a large and “non-linear” ditTer-
erm in the output For example, a charlge in ttle length or time
clf all event of a fractiorl of a percent can cause a planner algc~
rittl[[l to e[tlit a very different [)lan. L%’e rIlake ttlis distirlctiorl
in order to stress ttle illlportar](.c of state expioratiori.

explore the behavior of the systcnl over a rangy of
plausible environnlents inordertogtiu confidencci)l
the robustllessof the system.

The tools and techniques we propose automatically
generate a large number of plausible environn}euts,
explore the response of the system over the enviro-
nments, and characterize the robust ncs so fthe systcvl~.
Our approach is based upon dynamic comparison of
the state trajectory of the systeul being tested against
mathenlatically rigorous (formal) descriptions of the
expected behavior of the system. We propose to use
both black-box (i.e. description in term of initial
state, inputs and outputs oIIly) and white-box (in-
ternal details of the software execution are exposed)
descriptions, because the closed-loop nature of the al-
gorithms will tend to rrm.sk some faults and so render
black-box testing incomplete.

We begin with by describing how the differences
between conventional and autonomous spacecraft ini-
pact the test and verification problem. We then out-
line our proposed tool suite and show how it addresses
the issues. Finally, we describe the results analy-
sis component in some detail, including sonle sample
.spccifications.

2 W H Y T E S T ?

Ultimately, our objective in testing is to ilnprove the
expected science return, and so r[)inimim the illcre-
rnenta.1 cost of science data. PreInature spacecraft
failure is the biggest threat to science returrl, so a
sigrlificant, part of autonomy software tries to pro-
tect the spacecraft against onboard failures and self-
destructive comnlanding2. lJnfortunatcly, since an
auto~lonlous system by definition has substantial col I-
trol over its own fate, it follows that the spacecraft
is highly vulnerable to mistakes within the autonouly
design and ir[lplelrlerltatic) rl, and so should be heavily
cxm-ciscd.

If we stipulate that the spacecraft can’t be COIII

2Spacecraft ha\w always had a powtrful on-board fault pro-
tection capability. Modern autonorlly software enables grcate[
fault co~wrage and responses that are more likely to allow the
rnissio[l to progress w,ithout human involven~et~t irl the rccowry
process.

~na[lded to cause itself pemaneut harv[l, then the
next biggest threat to science data return is to conl-
Inand the spacecraft to do something of low science
value. 1 low to provide a Ilvxrs.ure of the science value
of all possible observations a priori is at best an open
research question, because of the difficulty of captur-
ing and e[icoding the full trade-off space.3 It will
thus be a kmg time before it will be rationzd to d-
low an autonomous systm) make significant decisions
as to what science data to accluire4. It will there-
fore rcmlain important that we have a method of con-
firming that commands to the spacecraft will provide
good science return, even if maintenance of spacecraft
hm..lth is no longer a concer]l.

3 T O O L S U I T E

Our tool suite, nan]ed 7’ST>AR, covers system testing
tasks ranging from auto~natic generation of test cases
to autonlatic results analysis. The purpose of each
colnponent is outlined below. In particular, this pa-
per focuses on results analysis, so l’A[lr)I~is described
irl greater detail later in this paper.

TgeII ‘Ikst-case generation. ‘J’his conlponeut will de-
rive a nurubcr of plausible operaticmal scenarios,
givcl~ as input a single ~~on~inal scenario ancl cer-
tain J)erturbation criteria. For exanrpk’, it may
bc given as input an errcounter with an aster-
oid, which it will use tcl compute a large number
of plausible ways in WhiCh the mlcounter may
actually occur; it will vary tirrring relationships,
faults, and resource consurrlption. It also derives
test-specific pass/fail criteria, whirh is forwarded
to ‘1’AUI)I1’, where it is used tc~ aIlalyze the results
of the tests.

3b’or exanlple, the hfars E’athfinder scientists (dozens of
thetn) spend much of the night negotiating the next day’s ob
scr~atiorls. It is apparent that the science data is irn[)ortant to
thcltl, and secnls unlikely that the.v wc)uld crltrust these deci -
siorls to an aEgorithnl. IVC also speculate that it wonld be very
difficlllt to extract their dccisiorl processes.

41$’e rrlust decrc~se ttw cost of spacecraft, arirl in}pmve o~lr
ability to cricodc tile tradwff space. urltil it’s cheaper (per urlit
of science returtl) to build therrl v..ith built-in science decision
nlakirlg thar~ t o corrl[llarl(l ttlern durirlg ttlc rrlissio[l.

Tcxe ‘Ikst execution. This conlpcment will provide a
uniform interface by which test execution is corl-
trolled. The actual exer-uticm takes place upcm
an existing simulator, testbecl, or other vehicle,
typically provided by the project that built the
system that is being tested.

Taudit Results analysis. Test execution results arc
analyzed by this cmnponent. It infers the state
trajectory of the system being tested by the
contents of various logs and ntessages generated
during the test, and then validates that trajec-
tory via format predicates derived from various
sources including flight rules, clesign rules, and
test input.

Tvis Visualization. This component will provide vi-
sualization features for exploring the results of
the results analyzer. In particular, we conjec-
ture that proximity to failure will prove difficult
to surnrnarize, and so ‘his will provide for inter-
active exploration of this and other results.

4 Taudit

The purpose of TAUD1’1’iS to check the state trajec-
tory of the software under test against a nlathen~at-
ical specification of correct tmhavior, and to report
any cliscrepancies. Although ~’AU [Jrl’is a conlponerlt
of the Tstar suite of automated test tools, it may
also be used standalone to validate a systenl against
formal specifications.

l’he ideal is that 7’AuI)rris used with a progrartl-
rning discipline that generates COCIC fror[l specifica-
tions, arid specifies additional axioms as the cocle is
written arid yet others specific to a particular test
case. Sufficient state trajectory would be exposed
that TAUI)ll’could then be used to Corlfirnl that tllm’
are no vic)lations of any of the axiolns. Of course,
this is not always possible, and rilay not even bc cost-
cffective, Clepc!nding on the applir’ation[~, $2.1]. ‘~’Aw

r)[rldoes not enforce this ideal, and n~ay bc used over
a wide rallge of rigor: fiorn silll~)le application as a
hcav y-duty assertion notation, all the way to full for-
mal specification with critical ~as~)ccts l)rovell and all
checked dy[lrmic~ally.

‘1’A1ll)l’1’sul)~)c)rts ar~d erLcourages an asss2rtion[3] or
arlrlotation [4, 5] style of progranlrrliug, w’herehy as-
sur[lptimls nlade by the prclgranlrner are captured in
the form of prw and post conditions[fi] ancl dynanli-
cally checked. Ideally (trut rarely, if ever), one proves
that the pre and post corlditiorls are complete, con-
sistent, ancl imply the correct operation of the pro-
grarll. ‘1’AUt)tlprovides confidence in the prc and post
conditions at much lower cost, because it confirms
that a given execution does not violate the condi-
tions, rather than attcnlpting to prorre that they are
ucver violated,

“1’he specificatiorl of the system to he tested is writ-
trvi in5 the formal language of TALJDIT. ‘I’he nlath-
ernatical logic of ‘1’AUO1’1’iS a roug~~ly a first order
logic without quantification, with a rich set of re-
lational, arithnw.tic, logical, aucl bit operators, and
several useful datatypes (boolean, number-theoretic
integers, floats, sets, and enumerated types). It also
inclucles operators to gairr access to the previous value
of an exprcssiorl and to detect a change in the value
of an exprcssiorL, and the tirnc at which those events
occured, which together make it natural to write an
corlcise axiomatic specification of the system without
resorting to tertlporal logics. Ncm-rwcursive functions
are provided for expressive cc)nvenience, but do not
adcl to the power of the notation. l’AU1)[’rirrcludes as-
Sig[lrnent, but assignlnent operates “outsicle” of the
rnathernatica.1 logic ancl is intended to be used to syn-
thesize variables out of complicated functions on the
iriput, which are thcrl operated upon frorrl within the
logic.”

O u r intcrlt is that a suite of dornairl-specific
languages will be developed in the spirit of e.g.
l,arch/1,(~1,[7], which arc easier to use than 2’Au DIq,
arid are conlpilcd irlto I’AU[)[’l’. Wc thus get the best
of two worlds users can work iri domain notations,
aild ‘l’,kuI)rrIcar~ work irl a single forlllal dc~~nai117. A
sirlglr! irrlpro~rerrlent to ‘~ ’A LfI)ll’]evcrag(:s into benefits

50r translated il!to.
6~,,r ir,t(>[,t i s to avoid Custorltizing t}lc tool to particular

a}>[)l ications by giving ttlc users access to significant compu-
tational ca[~at)ility that can t,e uswt to transform input data
before processirlg by the bulk of “1’audit,

71n fact even ‘1’atldit tl~s two Iet,els of notation: a syrltac-
tically rich iriflx rlotatio[l f o r hurIlarLs, ar!d a lis~) -like prefix
notatiwl for autorllatrxi lllarli[l~lla!,ic]r].

.

for nlultiple user donl.sins. Also, q’AUD1’1’provirh?s a
nlathernatical rigor that could be excessive for some
applications and can be hidden by the higher dr-
gree of abstraction that may be provided by donlain-
specific user friendly notations. g’his approach WZLS

used in I,arcb to good effect.

4.1 E x a m p l e s

Spacecraft are constrained by what are called “Flight
Rules”. l’hese rules generally express conditions that
must atways or never occur. Typical flight rules
nlight be “Never point the caulera at the sun”, “Al-
ways keep the antenna within 0.1 radla.ns of tile
Earth”, “’1’he fuel heater must be on for the thirty
minutes prior to operating the engine”. We can eas-
ily encode these and siInilar rules:

! Cmera cone relat,iv~ to the s~~ ~~~t
#! always be at least 0.2 rads.
invariant cameral

canrera. sun. cone > 0.2;

#! Antenna angle relat ive to the earth
#! must always be less than 0.1 rads.
i nva r i an t an t enna l

antenna_earth_cone < 0 . 1 ;

#! When the engine is turned on, the
! heater must have been o n for at
! least 30 minUteSO

i n v a r i a n t engine3 @T(engine_on)
-> heater_on

& (now-tup(heater.on)) >= 30;

#! The clock must advance by at most
#! 1/8 second.

funcdecl diff(_al) _al - prev(_al);
invariant tick

O <= diff(clk)
& diff(clk) <= 0 . 1 2 5 ;

uniquely idelltify the invariant) and then a boolean
expression. ‘1’AIJI)Il’w’ill confirl[l that the boolean ex-
pressio]l is true forallobserved vatuesof the state.

‘[’he function ‘(@T()” is true only in the tin~e in-
statlt at which the argulnetlt becomes true. Similar
fulictious dr%ect other change conclitious. The func-
tion “tup” returns the tin~e at which the boolean ar-
gurnellt last becan)e true. “tclu” and “tch” can ac-
cess the time at which an expression becanm false or
chaugcd, respectively. l’AUrJIT’provides the variable
“now” , which is the current tilne.

Assignnlents operate within the context ofguarded
colnnlands, as can be seen in the following exaruple.
The variable Yirstsubfrarne” is providcdby the sys-
teulandis true only for the first iteration through the
guardecl cornnlands at any time instant. Invariants
ruay be applied to the state trajectory that occurs
while the guarclect conlrnands arecycliug.

guardedcmd dla
firstsubframe & QC(N) & N > 0:
go := T;

guardedcmd dlb
go:reps : = N ;

guardedcmd d l c
go:rslt := 1;

guardedcmd did
go:go := F;

guardedcmd dle
(reps > O):

rslt : = rslt * reps,
reps := reps - 1;

11’e have deltlculstratecl the use of ~’ALJI)IT’to check
the execution of a software en~ulator for an~icrocon-
troller (thcInte 18085.4). Each oprodewas axiorllizccl,
and then tests that exercise all opccrdrx wwe e.xe-
cutcd. ‘1’hc following is a somewhat r[lcrre detailecl
exalnple. Not show’11 are sonw sinlple axic)nls t h a t
sho W that all aritllrltetic is rnodcled in terl[ls of uatu -
ral nurtlbers, l~or are the (many!) drclaratiorls shown.

Constraints upon the state of the systenl are ex- #! eight-bit twos-complement addition.
pressed as invariants, as can be seen irl these exanl- funcdecl add8(_al,_a2) (_al+_a2)%256;
plrs. E;ach invariant starts with the “invariant” key-
word, followed by the nan]c of the ir~wrriant (used to #! 1 if _al, else O.

.

funcdecl bv(_al) (-al)?l:O;

funcdecl addcorrrrnon(_al)_a2)
rA <-- add8(rA,_ai)
& fCY <- bv((rA+-al)>255)
& fS <- bv(add8(rA,_al) > 1 2 7)
& fZ <- bv(add8(rA,_al) = O)
& fP <- bv(even_parity(add8(rA,-al)))
& fAC <- bv((rA%16+_alX16) > 16)
& nc(_a2,{rA},{});

#! ADD r 5-6
invariant ADDr op_nns(#blOOOOOOO)

addcommon(rSSS ,1);

#! INR r 5-8
invariant INRr op_ndn(#bOOOOOIOO)

r d d d < - add8(prev(clk,rddd),l)
& fS <- bv(add8(prev(clk,rddd), l) >
k fZ < - bv(add8(prev(clk,rddd),l) =

->

->

s~)ccification and the concrete progianl it sprxifies by
verifying J)rograru execution against the formal spec-
ification. In this section we will cor[]pare several of
then~ with our tool,

ACL2[8] ACL2 is an interesting tool that uses an
executable forn!alized subset (including recur-
sive fur!ctions) of Columon Lisp[9] as its nota-
tion. It has a sophisticated theorem prover,
‘1’Au I) IIUW!S a very sirftilar subset of Cornrnon
Lisp. ‘1’AU 01’1’is restricted to total functions,
where ACI,2 allows the usc of partial functions
at the cost of reduced reasoning capability. ‘~’Au-
[jrldoesnothave recursive finctiorls, though the
could easil,y be added: we don ‘t provide them
because we’re trying to simplify autoruated rea-
soning. ACI,2 does not directly support the dy-
naruic verification goal of l’AUL)I’l>, but see no

127) reason whyitcouldn’t be easily adaptedto that
o) use by executing the specification and code on

& fP <- bv(even_parity(add8(prev(clk ,rddd),l)))he same inPUts and comparing the results of
& fAC <- bv((prev(clk,rddd)~16+l~16) > 16) thetwo corrlputations.
& nc(l,{rddd},{});

ADL[5] AD1, is used to specify the post-conclitions

‘l’he operator “+” is semantically ancl syntactically of functions, and can check that for a particu-

equiva.len ttotheequality operator “==’’,but (todatc., lar execution, the post-conditior,s do ir,dcecl hold
illforrnally) conveys the additional iufornlation that true. Its prinlar ypurpos eistoforrtlally specify

the left hand side may have changed during theexe- the serr]antics of functiolis written in e.g. C++.

cution oftheopcode, but therighthand siderrlustnot ‘1’he specification is separate fiorn the irnplen~en-

have changed. The “XIC()” function explicitly states tation of the function, as it is for ‘1’AUI)I’l’. AI)I,

what values are allowed to change: all other state also has orle base language and multiple donlain

must have remained unchanged. languages, as does ‘l’AurJ1~>. .41)1, does not ap

“J’he careful reader will also note that “prevo’” has pear to have sonle of our concepts e.g. “@lo’”,

another argurnerlt. The first argument is used to irl- latching “prevo’”, and “tcho’”, and so is less ex-

dicate wherl to latch the previous value: wherl the pressive in those qu.asi-terrlpora] areas. It gains

frrstargurnen tchanges, thcvalue of the second argu- full exprcssik,e~less via recursive functions, where

ment is latched. We found that this rrlakes it much “]’ALl[)l’l’ck)m so via guarded Corrlrrlar[ds that op-
easier to write robust specific atiorls, sirlcc the tilrl(, crate outside of the ‘1’AU1)l”l’)ogic. .41)1, is gerl-

epochs car) be controlled frou~ within the specifica- erally richer in syntax and rnodularizatiorl than

tion, rather tharl by when the state variab]c values ‘~’Au[)ll: ‘~’A[ll)[lis rather spartan slid corLcisC in

hapJ)eri tc) be emitted from the systtml unckr test. corrll)arisorls. AI)I, does rlc)t secrr) to have sul)-
~)ort for autorrlated I)roof systelrls. We bel ieve

4.2 Related work
that autorllated proof suprmrt is important to
a full Iifcryclt: specification Systerrl such as ‘l’.A[:-

I’here are sever-d other systertls in the literature that
‘our desig[! irlclutlcs r[locl[]lariz:iti{,rl arlcl sco[, ir]g, but those

share our goal of closi]lg the gap t)etwrx!Il a forrr]al [Cat{lrt,s liavt, IIOt bwrl inlplcvtlcrltrfl.

.

LJ1’1’, and so dCCiCICd to linlit the Cxpressivmless so
as to simplify the construction of an autonlated
prover. AL)I, supports partial furlctions, whrre
l’Aur)Il’does notg.

Anna[4] Anna uses a subset of the target program-
ing language (Ada) with a few additions (irl -
clucling a form of multi-sortecl quantification),
to formally annotate the program with predi-
cates in such a manner that the predkates can
be checked during runtime. l’he specifications
are placed in the code in the fornl of fern I al
comments, where in “]’AU urrthey are separate
from the code. Anna is purposefully nearly
the same language as the program being spec-
ified, where TAU[)IqiS explicitly not the same
language. Anna has significarlt machinery to ex-
tract the necessary runtinle inforatation to check
the annotations, where q’AUI)ITrequires that this
is clone nlanuatly. Automated proofs are not ex-
plicitly supported, but are not excluded except
perhaps for the complications of typing, partial
functions, and quantification.

Larch[7] I,arch is a specification notation and proof
system. Specifications are generally written ir~ a
notation specific to the program riling language
of t}le system being specified, which are then
converted to and analyzed in the I,arch back-
end language, 1, S1,. 1,S1, specifications are not
intended for dynarrlic corllparison with progranl
execution, but rather towards the use of proof
tecbniclues to support assertions made about the
system. 1,S1, is a first order logic notation.

SEQ-REVIEW[l 1] SE()-RI;VIHV is a
production-quality and heavily used ululti-
purpose file browser that can parse a wide
variety of files, display projecticms of the corl -
tents in various graphical and textual forr[ls,
and perform specialized constraint checking. It
has a built-in recursive programr]ling langua~,c
sinlilar ixi spir i t to AWK, tha t can pcrforrll

—
‘ W e recoguizc that there are good arg(lrllerlts in defense

of partial functiorls[l O), but made a decisioo bitsed towards
si[oplifyirlg the model of our logic. We will revisit this decisiou
if it becor}les a major problenl.

arbitrary cornl)utations 011 the irlpllt. It would
be possible, but generally very inconvenient
and inefficient, to usc SEQ-RHVIEW to do the
san)e checks m performed by ‘1’AUIJ1’r. TAU t)rris
positioned as a formal specification and dynamic
a]lalysis tool based upon mathematical logic and
intended to support automated reasoning, where
SIQRNVIEW’ is positioned as a sophisticated
nlulti-purpose file brcwser that perforrus some
specialized constraint checks.

SRLT[12] S}{1;1’ performs white-box testing, using
the SI)IN model checker[13] to verify execution
traces. It conlputes equivalence partitions of
potential execution traces, and generates test
cases for partitions that have not been tested.
SRI~I’ is primarily intended to test distributed
systems for e.g. deadk)ck, race conclitions, etc.
S Rlfl’ uses the same whit[:-box approach as lAu-
r)rl’dots, in fact the SRIfI’ logging facility could
be used to genrxate clata for ‘] ’AUDI”l’. SRl,lI is
positioned to test against behavoria.1 specifica-
tions of interacting state machines, where l’Au-
r)rrrworks with algebraic specifications.

5 P R O J E C T S’I’ATUS

‘1’Aul)l’l’has been irllplenlentecl and is being used to
verify a software implementation of a microcontroller
(the Intel 8085.4). We found that writing the speci-
fication W*S about orlc fourth as much work as was
the actual implenlentation of the emulator. Our orig-
inal goal was to apply it to a remote agent spacecraft,
but schedule differences have so far pre~’entcd us from
doilig so.

‘1’he remaining tools of the ‘1’star project have been
discussed or desigrled to so~[le level of detail, but none
have berzi inl~derllented,

6 FtJTURE W O R K

Add autoxnate.d reasonir:g ‘1’Aur)r[is desigrled to
support autonlatecl rcasonillg, priruarily because
we believe that our irltfvldecl application will re-
sult ill specifications .s0 large that we will necc}

. 4

‘.

Fly

autonlated tools to gain contidcnce in the speci-
fication itself.

it as a hypervisor[14] Although ‘1’AU [1[’[’was
originally conceived ~ a system verification tool
for pre-flight testing, it’s small size and efficierlt
event-driven checking make it suitable to serve
as an onboard in-flight behavior lI1onitor. ArIy
violations detected during flight would alert the
ground that the spacecraft is behaving outside
of an acceptable envelope.

Add state-oriented notation TAuDITis able to
track observed behavior against a state-
transition description, but it requires a tedious
group of guarded cornrnands. We plan to add a
construct to sirnplifi specification of statecharts.

7 S U M M A R Y
‘1’esting spacecraft systems that have a high degree of
autonomy requires new testing techniques, because
of the higher sensitivity to the environnlellt that such
systen~s, by definition, exhibit. l’sTAI{addreSSes the
issues by automatically generating a large number of
plausible scenarios “near” a given mission profile, and
validates the execution of each against a fornlal spec-
ification of correct behavior. One component of the
suite, ~’Au D1’I’, has lJeC1l implemented and success-
fully applied to production code.

References

[1]

[2]

[3]

S. I[edberg. Al Corning of Age: NASA uscs Al
for Autonomous Space Exploration. IEEE Ex-
per~, pages 1315, June 1997.

J. Rushby. For-[nal Methods and I)igital Sys
terns Validation for Airborllc Systems. ‘1’ethnical
Report NASA ~kmtractor Repc)rt 4551, NASA,
1993.

1).S. Rosenblurn. A Practical Approach to PIo-
granlrning with AssertioIls. IEEE Tmnsactio7ts
07! Software Engineering j 21(1):19 31, January
1995.

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

D. I,uckhanl. f’rogm7n7riing with Specifications:
An Introduction to ANNA, A I.anguage for Spec-
ifying Ada Progra7ns. Springer-Verlag, 1990.

S. Sankar and R. Hayes. ADI, - An Interface
I)efinition I,anguage for Specifying and ‘Testing
Software. S[GPLAN Arotices, 29(8):13 21, 1994.

It.W. Dijkstra. A l)iscipline of 1’Togramnaing.
I’rentice-I1atl, 1976.

J.V. Guttag and J. II. IIorning. Larch: L a n -
guages and Tools for Formal Specification.
Springer-Verlag, 1993.

M. Kaufrnann and J.S. hloore. An Industrial
Strength q’heorern Prover for a I,ogic Based on
Gox[lrnon I,isp. IEEE Tru7wactio71s on Software
Engi71eeting, 23(4):203 213, April 1997.

Jr. G. Steele. Comnion 1.1S1’: The Language.
Digital I’ress, Redford, Mass., 1984.

1).1, I’ar-nas. Predicate l,ogic for Software Engi-
neering. IEEE Tknsactions 07t Software Engi-
neeri7ig, 19(9):856 862, September 1993.

P.F. Malclaguc. SItQ-RI~VIEW: A Tool for
Reviewing and Checkirlg Spacecraft Sequences.
‘J’ethnical Report NASA ‘1’R 19950011146N,
NASA, November 1994.

J. ~allahan, S. Itasterbrook, aud F. S c h n e i -
der. Autonlatccl Software Tkstiug Using Model
C;hccking. In Workshop 07i I,iving with Inco7wis-
tency at the 17ite77tatio7tal Co7zfere7ice on Sofl-
w a r e Engi7ieering (l CSE), Iloston, h’la., M a y
1997.

G. IIo17jnlarln. l’lie Model c h e c k e r S1’IN.
lblEE Tiansactioms o n Software Engine eri71g,
23(5):279 295, hlay 1997.

‘1’.~~. Ilressoud and F. El. Schneider. IIypervisor-
[]ascd k’ault-’I’olerance. A C M li-ansactio7~s o n
Co7nputer Syste7tis, 14(1) :80 107, Jariuary 1996.

